B.TECH DEGREE EXAMINATION,JANUARY 2023

THIRD SEMESTER
INFORMATION TECHNOLOGY
DIGITAL SYSTEM DESIGN
PART-A(10X2=20 MARKS)
1.Write 16-bit 2'scomplement representation for the decimal number -28.

$$
\begin{aligned}
& \text { 16-bit reporesentation of decimal } \\
& \text { number +28 is :(0000 0000 0001 1100)2 } \\
& \text {-28 is nothing but } 2 \text { 's complement of +28. } \\
& \text { 1's complement of +28:11111111 1110 0011 } \\
& \text { 2's complement } \quad \frac{1111111111100100}{1} \\
& \text { 2's complement of }-28 \text { is:11111111110 } 0100
\end{aligned}
$$

2. Find the minimum number of 2 -input NAND gates required to implement a 2 input XOR gates and draw the logic diagram.

3. A four bit ripple carry adder is realized using 4 identical full adder. The carry propagation delay of each (FA) is 13 ns . Calculate the worst case delay.

Solution:
Carry propagation delay of each

$$
f A=13 \mathrm{nsec}
$$

Sum propagation delay of each $F A=4$ nsec. So, in 4 -bit rumple carry adder, worst case. delays of this 4 -bit adder will be

$$
\begin{gathered}
=(4 \times 13) n s e c+4 n s e c \\
=56 \mathrm{hsec} .
\end{gathered}
$$

4.implement the given function using multiplexerF(A,B,C)=£ $\mathbf{m}(\mathbf{0}, \mathbf{3}, 4)$.

Solution:

A	B	C	y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

5.what is sequential circuit?How does it differ from combinational circuit?

Parameters	Combinational Circuit	Sequential Circuit
Meaning and Definition	It is a type of circuit that generates an output by relying on the input it receives at that instant, and it stays independent of time.	It is a type of circuit in which the output does not only rely on the current input. It also relies on the previous ones.
Feedback	A Combinational Circuit requires no feedback for generating the next output. It is because its output has no dependency on the time instance.	The output of a Sequential Circuit, on the other hand, relies on both- the previous feedback and the current input. So, the output generated from the previous inputs gets transferred in the form of feedback. The circuit uses it (along with inputs) for generating the next output.

6.Give the excitation table for D-FF AND T-FF.

D-FLIP FLOP

T-FLIP FLOP

Excitation table:

Q	Q^{+}	T
0	0	0
0	1	1
1	0	1
1	1	0

7.List the major difference between PAL AND PLA.

S.NO	PLA	PAL
1.	PLA stands for Programmable Logic Array.	While PAL stands for Programmable Array Logic.
2.	PLA speed is lower than PAL.	While PAL's speed is higher than PLA.
3.	The complexity of PLA is high.	While PAL's complexity is less.
4.	PLA has limited amount of functions implemented.	While PAL has a huge number of functions implemented.
5.	The cost of PLA is also high.	While the cost of PAL is low.
6.	Programmable Logic Array is less available.	While Programmable Array Logic is more available than Programmable Logic Array.

8.What are the steps for the design of asynchronous sequential circuit?

1. Create a state table or state diagram from the given problem statement.
2. Create a new reduced state table by removing all the redundant states.
3. Create the transition table.
4. Write the excitation and output Boolean equations and simplify them.
5. Draw the logic diagram.

9.Define gate-level modelling?

Gate level modeling is virtually the lowest level of abstraction because the switch-level abstraction is rarely used. Gate level modeling is used to implement the lowest-level modules in a design, such as multiplexers, full-adder, etc. Verilog has gate primitives for all basic gates.

10. Write the syntax for even construct.

A HDL is a domain specific language, specifically designed to support the description of digital logic circuits and clock driven sequential logic. As such a HDL contains special constructs to enable the description of digital hardware and RTL elements.

PART-B(5X11=55 MARKS)

UNIT 1

11.Simplify the following Boolean function using K-MAP and implement using only NAND gates $F(A, B, C, D)=£_{M}\left(\mathbf{1 , 3 , 4 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5) + £ _ { D } ((2 , 5 , 6 , 7)}\right.$.

Solution:

$$
\begin{aligned}
& \text { Sutton: } \\
& F(A, B, C, D)=\sum_{m}(1,3,4,11,12,13,14,15)
\end{aligned}
$$

$$
+\Sigma d(2,5,6,7)
$$

$$
\begin{aligned}
& Y \geq S O P=B+C D+A^{\prime} D \Rightarrow \bar{Y}=\bar{B} \cdot \overline{C D} \cdot \overline{A D} \\
& Y=\overline{B \cdot C D} \cdot A D \\
& A^{\prime} \cdot l
\end{aligned}
$$

$$
P O S=A^{\prime} \cdot C
$$

OR
12. Minimize the given Boolean function using Quine McCluskey $F(A, B, C, D)=$ £M(5,7,8,9,10,11,14,15).

Solution:

$$
\begin{aligned}
& \text { union: } \\
& F(A, B, C, D)=\sum_{m}(5,7,8,9,10,11,14,15)
\end{aligned}
$$

Step 1: Binary equivalent for decimal hos.

Decimal number	Birgouy equivalent
5	0101
7	0111
8	1000
9	1001
10	1010
11	1011
14	1110
15	1111

Step 2: Groping.

No. of ones	Decimal no.	Bincory equivalent
1	8	1000 -
2	5	0101
	9	1001
3	10	1010
	7	0111
	11	1011
	15	1110

Ster 3: 2-cell Grouping.

Step 4: 4 -cell Grouping

4 -cell	Binary equivalent
$(8,9,10,11)$	$10 \ldots$
$(8,10,9,11)$	$10 \ldots$
$(10,11,14,15)$	$1-1 \ldots$
$(10,14,11,15)$	$1-1-$

Step 5: Remove Replicant.

4 -cell	Binary equivalent
$(8,9,10,11)$	$10 \ldots$
$(10,11,14,15)$	$1-1-$

Prime implicants are,

$$
\begin{array}{ccc}
(5,7) & A B C D & A^{\prime} B D \\
(7,15) & 01-1 & B C D \\
(8,9,10,11) & 10- & A B^{\prime} \\
(10,11,14,15) & 1-1- & A C .
\end{array}
$$

Prime Implicant chart:

\qquad

UNIT 2

13.Design a circuit that converts BCD code to Excess-3 code converter.

BCD(8421)				Excess-3			
A	B	C	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

To find the corresponding digital circuit, we will use the K-Map technique for each of the Excess- 3 code bits as output with all of the bits of the BCD number as input.

Corresponding minimized Boolean expressions for Excess-3 code bits -

The corresponding digital circuit-

OR

14.Implement the switching function $F=£_{M}(3,6,7,8,10,12,13,14,15)$ using an 8 input multiplexer.

In the given boolean expression, there are 4 variables. We should use $2^{4}: 1=16: 1$ multiplexer. But as per the question, it is to be implemented with $8: 1$ mux.

For 8:1 multiplexer, there should be 3 selection lines. So from the given 4 variables, the 3 least significant variables(B, C, D) are used as selection line inputs.

The 8 inputs are derived using the implementation table shown below

From the derived input $8: 1$ multiplexes. can be drawn as below.

UNIT 3

15.A sequential circuit has two flip flops A and $B, t w o$ inputs x and y and one output z.the flip flop input equations and circuit output equations are:
$\mathbf{J}_{\mathbf{A}}=\mathbf{B x}+\mathbf{B}^{\prime} \mathbf{y}^{\prime}$
$K_{A}=B^{\prime}{ }^{\prime} \mathbf{y}^{\prime}$
$\mathbf{J B}_{\mathrm{B}}=\mathbf{A}^{\prime} \mathbf{x}$
$\mathbf{K}_{\mathrm{B}}=\mathbf{A}+\mathbf{x y}{ }^{\prime}$
$\mathbf{Z}=\mathbf{A x} \mathbf{\prime}^{\prime} \mathbf{y}^{\prime}+\mathbf{B} \mathbf{x}^{\prime} \mathbf{y}^{\prime}$
Draw the logic diagram and tabulate the state table.

State diagram:

STATE TABLE:

Present state		Input		Flip-Flop Inputs				Next state		Output
A	B	x	y	$\begin{gathered} \mathbf{J}_{\mathbf{A}}= \\ \mathbf{B x}+\mathbf{B}^{\prime} \mathbf{y}, \end{gathered}$	$\begin{gathered} \mathbf{K}_{A}= \\ \mathbf{B}^{\prime}{ }^{\prime} y^{\prime}, \end{gathered}$	$\begin{aligned} & \mathbf{J}_{\mathrm{B}}= \\ & \mathbf{A}^{\prime} \mathbf{x} \end{aligned}$	$\begin{gathered} \mathbf{K}_{\mathrm{B}}= \\ \mathbf{A}+\mathbf{x y} \end{gathered}$	$\mathbf{A}(\mathbf{t}+1)$	$B(t+1)$	z
0	0	0	0	1	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1	1	1	0
0	0	1	1	0	0	1	0	0	1	0

0	1	0	0	0	0	0	0	0	0	1
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	1	1	1	1	0
0	1	1	1	1	0	1	0	1	1	0
1	0	0	0	1	0	0	1	1	0	1
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	1	1	0	1	0	0	0
1	0	1	1	0	0	0	1	1	0	0
1	1	0	0	0	0	0	1	1	0	1
1	1	0	1	0	0	0	1	1	0	0
1	1	1	0	1	0	0	1	1	0	0
1	1	1	1	1	0	0	1	1	0	0

STATE EQUATION:

	For $\mathrm{A}(\mathrm{t}+1)$			
$\left.{ }_{1 B}\right)^{x y}$	00	01	11	10
00	1	0	0	1
01	0	0	1	1
11	1	1	1	1
10	1	1	1	0

$A(t+1)=A x^{\prime}+A y+B x+A^{\prime} B^{\prime} y^{\prime}$

For $B(t+1)$

$B(t+1)=A^{\prime} x$

16.Design a BCD synchronous counter using JK flip flop.

16. Synchoronals counter from oto 9 $000 \rightarrow \rightarrow 9$
State Diagram:

State Table:

$B C D$ counter using $J K-F F$.

UNIT 4

17.combinational logic is defined by the functions $F=£(3,4,5,7,10,14,15)$ AND $£(1,5,7,11,15)$.IMPLEMENT the circuit using a programmable logic array with 4 inputs, 6 product terms and 2 outputs.

$$
\begin{aligned}
& \text { Solution } \\
& F_{1}=\operatorname{\sum m}(3,4,5,7,10,14,15) \\
& F_{2}=\Sigma_{m}(1,5,7,11,15) \\
& K \text {-map for } F_{1} \text { : } \\
& F_{1}=a^{\prime} b c^{\prime}+a^{\prime} c d+a c d^{\prime}+b c d \\
& \begin{array}{l}
K-m o y p \text { for } F_{2}: \\
a b{ }^{\text {Cd }} 00 \quad 01 \quad 11
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}=A^{\prime} C^{\prime} D+B C D+A C D .
\end{aligned}
$$

PLA Table

Product Term	a	b	c	d	F_{1}	F_{2}
$a^{\prime} b c^{\prime}$	0	1	0	-	1	-
$a^{\prime} c d$	0	-	1	1	1	-
$b c d$	-	1	1	1	1	1
$a^{\prime} c^{\prime} d$	0	-	0	1	-	1
$a c d$	1	-	1	1	-	1
$a e^{\prime} d^{\prime}$	1	-	1	0	1	-

Logic Diagram.

OR

18.Tabulate the PAL programming table for the four Boolean functions listed below.
$\mathbf{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathfrak{£}(\mathbf{1}, \mathbf{2}, 4, \mathbf{6})$
$\mathbf{B}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\boldsymbol{£}(\mathbf{0}, \mathbf{1 , 6 , 7})$
$\mathbf{C}(\mathbf{x}, \mathbf{y}, \mathrm{z})=\mathfrak{£}(\mathbf{2}, \mathbf{6})$
$\mathbf{D}(\mathbf{x}, \mathbf{y}, \mathbf{z})=£(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{5}, 7)$. simplify using K-map.

PAL Program Table

Logic Diagram:-

UNIT 5

19. Interpret a Verilog HDL code to perform read and write operation of memory.

HUL Exampie \%. 1

```
// Read and write operations of memory
// Memory size is }64\mathrm{ words of four bits each.
module memory (Enable, ReadWrite, Address, Dataln, DataOut);
    input Enable, ReadWrite;
    input [3: 0] Dataln;
    input [5: 0] Address;
    output [3: 0] DataOut;
    reg [3: 0] DataOut;
    reg [3: 0] Mem [0:63]; // 64 x 4 memory
    always @ (Enable or ReadWrite)
        if (Enable)
        if (ReadWrite) DataOut = Mem [Address]; // Read
    else Mem [Address] = Dataln; // Write
    else DataOut = 4'bz; // High impedance state
endmodule
```


OR

20.Design Verilog module for an edge triggered D Flip flop in the data flow model.

D Flip-Flop is a fundamental component in digital logic circuits. Verilog code for D Flip Flop is presented in this project. There are two types of D Flip-Flops being implemented which are Rising-Edge D Flip Flop and Falling-Edge D Flip Flop.

Rising-Edge D Flip-Flop

Falling-Edge D Flip-Flop
module RisingEdge_DFlipFlop(D,clk,Q);
input D; // Data input
input clk; // clock input
output Q; // output Q
always @ (posedge clk)
begin

```
Q <= D;
end
endmodule
```

module FallingEdge_DFlipFlop(D,clk,Q);
input D; // Data input
input clk; // clock input
output reg Q; // output Q
always @ (negedge clk)
begin
Q < = D;
end
endmodule

